Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

β-1-Acetamido-4-O- β-D-galacto-pyranosyl-d-glucopyranose dihydrate

Thiruneelakantan Lakshmanan, Desikan Sriram and Duraikannu Loganathan*

```
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
Correspondence e-mail: loganath@iitm.ac.in
Received 26 July 2000
Accepted 16 March 2001
```

The crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{25}$ $\mathrm{NO}_{11} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been determined. The glucose and galactose residues are in a ${ }^{4} C_{1}$ conformation. The N-acetyl group has a Z-anti conformation.

Comment

The oligosaccharide components of glycoproteins play an important role in various biological recognition processes, such as protein targeting and cellular recognition (Dwek, 1996). As part of our efforts to unravel the structural aspects of N-glycopeptides, we have reported previously the crystal structures of simple model compounds of the linkage region, viz. β-1-N-acetamido-D-glucopyranose (Sriram et al., 1997) and $\beta-1-N$-benzamido-d-glucopyranose (Sriram, Srinivasan et al., 1998), and also β-1- N-acetamido-2-acetamido-2-deoxy-Dglucopyranose and β-1- N-benzamido-2-acetamido-2-deoxy-Dglucopyranose (Sriram, Lakshmanan et al., 1998). For the present study, the title compound (I) was chosen as a disaccharide model.

(I)

The structure of (I) together with the atom-numbering scheme is shown in Fig. 1 (PLATON; Spek, 2000). Selected geometrical parameters are listed in Table 1. Both the glucose and galactose residues adopt a ${ }^{4} C_{1}$ conformation. The threedimensional structure of the disaccharide is determined by the glycosidic torsion angles $\varphi(\mathrm{C} 14-\mathrm{O} 14-\mathrm{C} 21-\mathrm{O} 25)$ and $\psi(\mathrm{C} 21-\mathrm{O} 14-\mathrm{C} 14-\mathrm{C} 15)$, the values of which are -89.3 (2) and $-157.84(18)^{\circ}$, respectively. These values compare well with those reported in the literature for the related disaccharides methyl β-lactoside (Stenutz et al., 1999) and methyl β-cellobioside (Ham \& Williams, 1970) (Table 2). While there is a good agreement of φ with the corresponding values in N-acetyl- α-lactosamine $\left(-88.1^{\circ}\right)$ and α-lactose $\left(-92.60^{\circ}\right)$, the
value of ψ differs by about $15-20^{\circ}$. The exocyclic primary hydroxyl group adopts a $g g$ and $g t$ conformation in glucose and galactose residues, respectively (gg is gauche-gauche and gt is gauche-trans). This is indicated by $\omega(\mathrm{O} 15-\mathrm{C} 15-\mathrm{C} 16-$ O16) being $-59.3(2)^{\circ}$ and $\omega^{\prime}(\mathrm{O} 25-\mathrm{C} 25-\mathrm{C} 26-\mathrm{O} 26)$ being 58.3 (2) ${ }^{\circ}$. In the lactose derivatives shown in Table 3, the glucose hydroxymethyl group is in a gt conformation, except for the cases of methyl β-lactoside and N-acetyl- α lactosamine.

Figure 1
The structure of (I) showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level for C and O atoms. H atoms are shown as spheres of arbitrary radii.

As is observed in the other model compounds reported by us and also in GlcNAc-Asn (Delbaere, 1974), the N-acetyl group has a Z-anti conformation, as shown by the torsion angles $\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2\left[173.0(2)^{\circ}\right]$ and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11-$ O15 $\left[-101.1(3)^{\circ}\right]$. When the molecule exists in a fully extended conformation, the angles $\mathrm{C} 14-\mathrm{O} 14-\mathrm{C} 21-\mathrm{O} 25$ and $\mathrm{C} 21-\mathrm{O} 14-\mathrm{C} 14-\mathrm{C} 13$ should be close to -110 and 110°, respectively (Fries et al., 1971). However, probably to accommodate the intramolecular hydrogen bond observed in most of the $\beta(1(\rightarrow) 4)$-linked disaccharides between the O25 and O13 atoms, compound (I) undergoes a symmetrical twist about the bridge glycosidic bonds, with the two torsion angles being -89.3 (2) and $81.5(3)^{\circ}$, respectively.

Both hydrate molecules are extensively involved in a network of hydrogen bonds which fall into two categories: (i) a finite chain of hydrogen bonds starting from $\mathrm{O} 24-\mathrm{H}$ and ending at O 25 , passing through the two water molecules, and (ii) a finite chain of hydrogen bonds starting at $\mathrm{O} 24-\mathrm{H}$ and ending at O 17 , with a hydrogen bond also between $\mathrm{N} 1-\mathrm{H}$ and O17. An infinite chain of hydrogen bonds alternates between O 23 and O26 (Table 2).

Experimental

The title compound was prepared by peracetylation followed by selective de- O-acetylation of β-lactosylamine. Lactose dissolved in a saturated aqueous ammonium bicarbonate solution was allowed to react for five days to obtain β-lactosylamine (Likhosherstov et al., 1986). The amine obtained after lypophilization was extracted with methanol and treated with pyridine and acetic anhydride to obtain the peracetylated product, which on subsequent de- O-acetylation
with sodium methoxide gave compound (I) in an overall yield of 30% [m.p. 515 K (decomposition); literature: 519-521 K (Kuhn \& Kruger, 1954)]. Crystals suitable for analysis were obtained from an aqueous methanol solution by slow evaporation.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{11} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=419.38$	$D_{x}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P 1$	Mo $K \alpha$ radiation
$a=4.860(6) \AA$	Cell parameters from 25
$b=7.603(10) \AA$	reflections
$c=13.242(2) \AA$	$\theta=15-25^{\circ}$
$\alpha=85.47(1)^{\circ}$	$\mu=0.13 \mathrm{~mm}^{-1}$
$\beta=84.06(2)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=75.19(1)^{\circ}$	Prismatic, colourless
$V=469.8(9) \AA^{\circ}$	$0.35 \times 0.35 \times 0.34 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (MolEN; Fair, 1990)
$T_{\text {min }}=0.92, T_{\text {max }}=0.96$
1650 measured reflections
1650 independent reflections

> 1592 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=25.0^{\circ}$
> $h=-5 \rightarrow 5$
> $k=-8 \rightarrow 8$
> $l=0 \rightarrow 15$
> 2 standard reflections \quad frequency: 60 min intensity decay: 3%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0507 P)^{2}\right. \\
& \quad+0.0587 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.072$
$S=1.04$
1650 reflections
274 parameters
H atoms: see below

Table 3
Comparison of selected torsion angles of lactosyl acetamide, (I), with those of related disaccharides $\left({ }^{\circ}\right)$.

Compound	φ	ψ	ω	ω^{\prime}
Lactosyl acetamide $\cdot \mathrm{H}_{2} \mathrm{O}^{a}$	-89.3	-157.8	-59.5	58.1
Methyl β-lactoside $\cdot \mathrm{CH}_{3} \mathrm{OH}^{b}$	-88.4	-161.3	-54.6	57.3
Methyl β-cellobioside $\cdot \mathrm{CH}_{3} \mathrm{OH}^{c}$	-91.1	-160.7	-55.1	52.4
β-Lactose ${ }^{d}$	-70.9	-131.5	72.6	50.5
α-Lactose $\cdot \mathrm{H}_{2} \mathrm{O}^{e}$	-92.6	-143.0	63.2	59.4
N-Acetyl $\alpha-$ lactosamine $\cdot \mathrm{H}_{2} \mathrm{O}^{f}$	-88.1	-139.5	-56.0	66.8
α-Lactose $\cdot \mathrm{CaCl}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}^{g}$	-76.9	-136.9	63.8	59.8
α-Lactose $\cdot \mathrm{CaBr}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}^{h}$	-76.0	-134.9	61.9	62.4

Notes: (a) this report; (b) Stenutz et al. (1999); (c) Ham \& Williams (1970); (d) Hiroustu \& Shimada (1974); (e) Fries et al. (1971); (f) Longchambon et al. (1981); (g) Cook \& Bugg (1973); (h) Bugg (1973).

The water H atoms were located from the difference Fourier map and were refined isotropically. All other H atoms were treated as riding $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA)$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

The authors wish to thank the Department of Science and Technology, New Delhi, for funding and the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology Madras, Chennai, for data collection. TL acknowledges the fellowship received from CSIR, New Delhi. We also thank Dr Babu Varghese, RSIC, IIT Madras, for valuable discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1160). Services for accessing these data are described at the back of the journal.

References

Bugg, C. E. (1973). J. Am. Chem. Soc. 95, 908-913.
Cook, W. J. \& Bugg, C. E. (1973). Acta Cryst. B29, 907-909.
Delbaere, L. T. J. (1974). Biochem. J. 143, 197-205.
Dwek, R. A. (1996). Chem. Rev. 96, 683-720.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Fries, D. C., Rao, S. T. \& Sundaralingam, M. (1971). Acta Cryst. B27, 994-1005. Ham, J. T. \& Williams, D. G. (1970). Acta Cryst. B26, 1373-1383.
Hiroustu, K. \& Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872-1879.
Kuhn, R. \& Kruger, G. (1954). Chem. Ber. 87, 1544-1547.
Likhosherstov, L. M., Novikova, O. S., Derevitskaja, V. A. \& Kochetkov, N. K. (1986). Carbohydr. Res. 146, C1-5.

Longchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J. C. \& Sinay, P. (1981). Acta Cryst. B37, 601-607.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000) PLATON. Utrecht University, The Netherlands.
Sriram, D., Lakshmanan, T., Loganathan, D. \& Srinivasan, D. (1998). Carbohydr. Res. 309, 227-336.
Sriram, D., Sreenivasan, H., Srinivasan, S., Vishnutheertha, M., Priya, K. \& Loganathan, D. (1997). Acta Cryst. C53, 1075-1077.
Sriram, D., Srinivasan, S., Priya, K., Aruna, V. \& Loganathan, D. (1998). Acta Cryst. C54, 1670-1672.
Stenutz, R., Shang, M. \& Serianni, A. S. (1999). Acta Cryst. C55, 1719-1721.

